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The motions of a close to dynamically symmetrical satellite in a circular orbit, that is, of a rigid body in a central Newtonian 
gravitational field, are considered. The periodic motions, generated from the conical precession of a dynamically symmetrical 
satellite, are constructed in the unperturbed problem. A rigorous, non-linear analysis of the stability of these motions is carried 
out. In the unperturbed problem, one of the coordinates, the angle of natural rotation of the satellite, is cyclic and the system 
of differential equations describing the motions of the perturbed problem is close to the system with the cyclic coordinate. The 
resonant case, when the ratio of one of the frequencies of small oscillations of the reduced system in the neighbourhood of a 
stable equilibrium to the frequency of the change in the cyclic coordinate is close to an integer and the case when there is no 
resonance are investigated. Previously obtained [1] results of an investigation of the periodic motions of autonomous Hamiltonian 
systems with two degrees of freedom are extended to the case of a system with three degrees of freedom being considered here, 
when the above-mentioned resonance is present. When there is no such resonance, the cases of parametric resonance, of third- 
and fourth-order resonance and, also, the general non-resonant case are distinguished. Results for the stability of non-autonomous 
Hamiltonian systems with two degrees of freedom in the case of resonances [2] and, also, the results of KAM-theory (in the 
general non-resonant case) [3] are used. © 2004 Elsevier Ltd. All rights reserved. 

The stability of the conical precession of a dynamically symmetrical satellite in a circular orbit has been 
investigated in [4-7]. In the case of a weakly elliptic orbit [8] and in the case of a close to dynamically 
symmetrical satellite in a circular orbit [91, the periodic motions of a satellite have been found (in the 
form of power series in a small parameter) and their stability has been investigated in the linear 
approximation. The periodic motions of a dynamically symmetrical satellite in a weakly elliptic orbit 
have been investigated for the case of resonance in forced oscillations, when one of the frequencies of 
the small oscillations of the satellite is close to the average motion of its centre of mass [10]. The 2top- 
periodic motions of a dynamically symmetrical satellite in an elliptic orbit, generated from the 2top~q- 
periodic motions in a circular orbit, are constructed and their stability is analysed in the linear 
approximation in [11]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider the motion of a satellite, that is, of a rigid body moving in a circular orbit in a central 
Newtonian gravitational field. Suppose GXYZ is the orbital system of coordinates with origin at the 
centre of mass G of the satellite. Its axes GX, GY and GZ are directed along the transversal, along the 
binormal to the orbit and along the radius vector of the centre of mass, respectively. We will associated 
a system of coordinates Gxyz with the satellite, the axes of which are directed along its principal central 
axes of inertia. The orientation of the system of coordinates Gxyz with respect to GXYZ will be specified 
using the Euler angles ~, 0 and q0. 
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The motion of the satellite about the centre of mass is described by canonical differential equations 
with Hamiltonian 

2 
2 2 

H = cos q0+ sin q0|------7- + g/-~sm 9 + c o s  q0 p0+ 

I[-(A 2 . 2 "~ 2^ A ]  2 { A  ,'~singcosq) 
+~L~,~cos 9 +  sm cp)ctg t ~ + ? j p ~ - ~ - J _ )  ~ pvpo- 

A 2 
--(~COS q ) +  . 2s ln  tp)s-~-~nOpvp,-~-'~ctgO {A l)sintpcostpctgOPoP_COS~ctgOpv_ 

(1.1) 

cos~t 3r(B 2 + sin2 p)sin20 + Ccos201 
- sin~Po + s'~'~'n0 P ,  + 

where A, B and C are the principal central moments of inertia of the satellite and Pv, P0, P are the 
momenta corresponding to the coordinates % 0 and % which have been made dimensionless using the 
factor Ao~0, where COo is the mean motion of the centre of mass. The variable "c = COot is taken as the 
independent variable. 

Suppose the moments of inertiaA and B of the satellite are similar. Then, on introducing the small 
parameter ~ = (A -B)/B (0 < e ~ 1) and, also, the parameter o~ = C/A (0 < ~ ~< 2), Hamiltonian (1.1) 
can be written in the form 

H = H (° )+e l l  (1) 
2 2 

1 2 / , , o ,  ,,,, ct o 
s-~nOpvp, - 2 sin 20 

cos~/ 3 
cos~ctg0pv - sin~p 0 + s-~--~p~ - + ~(cz- 1)cosZ0 (1.2) 

2 
H(1)  c o s  (p 2 1 . 2 2 1 2 2,.,. 2 sin~ocoscp 

= + ~cos q0ctg vp~ 2sin20Pv + ~sm ~Po s-~nO PvP°- 

2 
cos q0ctg0 3 2 . 2 

s-~nO PvP~- sinq°c°sq°ctg0p°p~ 2(1 +e)  c°s ~psln 0 

where/4 (0) is the unperturbed Hamiltonian corresponding to the motion of a dynamically symmetrical 
(A = B) satellite. The q0 coordinate in the system with Hamiltonian/4 (0) is cyclic and this means that 

1) P~ = Pto = const. The perturbing part a/-/( of Hamiltonian (1.2) contains the q0 coordinate and is periodic 
with res°pect to it with a period equal to re. A system with Hamiltonian (1.2) is therefore close to a system 
with a cyclic coordinate. 

We will now consider the particular motion of the unperturbed system, described by the relations 

P~o 
0 = 00 = arcs in3a_4,  P0 = P00 = 0 

= ~o = 0, Pv = Pv0 = 3(~-1)sin00cos00 

q0('t) = f~'~+q0(0), ~ = 4(c~-l)s in00 

and which corresponds to a conical precession of a dynamically symmetrical satellite. In the case of a 
conical precession, the axis of the satellite is perpendicular to the velocity vector of the centre of mass 
and at an angle 00 to the velocity vector of the centre of mass. At the same time, the satellite is rotating 
about its axis with angular velocity f~. 

In Fig, 1, the domain I (0 < o~ < 1), where sufficient conditions for the stability of conical precession 
are satisfied, and the domain II, where only the necessary conditions for stability are satisfied, have 
been separated out in the plane of the parameters o~, 00 (0 ~< o~ ~< 2, 0 ~< 00 ~< r¢/2). Domain II is defined 
by the relations 
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g/2 

00 

II 

\N l o)~ = 3~s h 

0 1 
Fig. 1 

> 43, sin20o > 18o( 2 - 27ct + 8 + 2(3~ - 2),,,/(3 ot - 1 )(3~ - 4) 
27ot2(~ - 1) 

The frequencies ml and m2 (12% > 0)2) of small oscillations of the reduced system with two degrees 
of freedom in the neighbourhood of the stable equilibrium position in domains I and II are determined 
from the equation [7] 

0) 4 -  [7 - 6t~-9t~(1 - ct)sin20o]~ 2 + 3 cos20o(4 - 3(t)(1 - tx) = 0 

The conical precession is unstable in the hatched domain in Fig. 1. 
We will now take the conical precession of the dynamically symmetrical satellite (for values of the 

parameters c~ and 00 from domains I and II) as the unperturbed motion and consider the motions of 
a close to dynamically symmetrical ( e ,  0) satellite in its neighbourhood. We will construct the periodic 
motions of the satellite which are close to its conical precession in the unperturbed problem and 
investigate their stability. 

2. T R A N S F O R M A T I O N  OF THE H A M I L T O N I A N  

In (1.2), we put 

0 = 0 0 + q l ,  Po = Po o + p l ,  ~ = ~to + q2, P q  = Pqo + p 2 ,  ~0 = q, P~o = P% + P 

The functions/q (0) and//(1) can be written in the form 

u `°' = °' + °' + I I i  °' + o ,  

H `1, = H(o I)+H(I 1) +H~ l,-at-H~ 1) +H{4 l,.at- 0 5 
(2.1) 

1) 
where H(~ (i = 0, 1) is the set of terms of the kth order with respect to the quantities qp pj (j = 1, 2) 
and IP[ a/2 with constant coefficients (when i = 0) or (when i = 1) n-periodic coefficients with respect 
to q with harmonics cos 2q and sin 2q; Os is the set of terms of no lower than the fifth order with respect 
to the same quantities. 
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The functions H(k °) have the form H(k °) = H}°0 ) = Hk(~ ), where  

H(o) v~ v2 ~t~ g2 
= Z hvlvzl.hl.t2ql q2 Pl P2 ' k = 2, 3, 4 k0 

VI + v 2 + g l  +l-t2 = k 

H(O) ~4(0) r4(o) 2 2 2 
21 ---- f2P, " '31 ---- (mlql+mEPE)P, " '41 = (llql+lEqlP2+laq2) P+nP 

h2ooo = ~ [9 (o t -  1)(cts in20o- 1) + ctg20o], hloo1 = 3t~-  2 -  
sin20o 

1 1 
ho2oo = ~ [ 1 - 3 ( t x - 1 ) s i n 2 0 o ] ,  hollo = -1 ,  hoo2o = ~, hooo2 - 2sin20 ° 

9 2 3 2 cosOo 4 ,  
h3ooo = -~  sinOocosOotX - ~ctgOo(7 cos 0 o - lO)ot - .--TTu(6cos ~ o -  16cos20o + 11) 

sin 0 o 

9 2cosOo 2 
h2ool = -~ctgOoct + .--T5-S-(2sin 0 o + 1) 

sin 0 o 

1 cos 00 
h02 m = -hi200 = ~ctg0 o, hlo02 - sin300 (2.2) 

3 2 2 3( l lcos4Oo-6COS20o - 2 1 )  
h4ooo -- g(7cos  0o+ 8)(t -t 8sin200 or+ 

9cos60o - 23 cos40o - 7cos200 + 30 3 sin20o + 1 
+ , h2200 = - ~ +  

6 sin40o 2 sin 2 0 o 

• 2 2 
7 c o s 2 0 0  + 5 1 0 s i n  0oCOS 0 o + 9 . 2 c o s 2 0 o  + 1 

-- ~ , //2002 -- 
h3°ol 2sin20o 3 sin40o 2sin40o 

1 2 1 2 l 1 
1 ho4oo ~sin Ooct 6'  = g = + ~COS 0 O -  - h0310 hi201 = 2 ' 

2sin 0 o 

1 2 c o s  0 0 c o s  0 0 
n =  ~(ctg 0o+ 1 ) ,  r n l =  ~ [ l _ 3 s i n 2 O o ( t X _  1)], m 2 - sin20o 

3 sin2Oo(COS20o + 2)tX + 3cos40o - 7 cos20o + 1 1 
l~ = , 12 = , 13 - 

2 sin 30 o sin 30o 2 sin 0 o 

The coefficients hvlv2glg2 which have not  been  written out  are equal to zero. 
For the function/4(1) in (2.1) we only give the terms H~ 1) and H~):  

2 H(I l ) HCo 1) = acos % = bcos2tpql + c s i n t p c o s g p  1 +dcosZtpp2 

2 3 a = 2cos 0 o -  ~, b = - c tg0o( l+6s in20o-3Czs in20o)  

c = ( 7 - 6 c Q c o s O  o, d = ctgO o 

(2.3) 

We now carry out  a number  of  canonical replacements  of the variables which simplify the structure 
of the Hamil tonian H. First, using the linear substitution 
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ql = nl lq~ + nl2q~,  q2 = n23P~ + n24P~, q = q* 

Pl = n33P* + n34P~, P2 = n41q~ + n42q*, P = P* 

nlz = kln23, hi2 = +kzn24 , n23 = (0)IA1) -1/2, n24 = (-I-0)2A2) -1/2 

n33 = (1+k10)1)1 /23 ,  n34 = (1 +k20)2)124 (2.4) 

n41 = [k I - sin200[0)1 + k l (3Ot-  2)]]n23 

/'/42 = +[k2 - sin20010)2 + k2(3~- 2) ] ]n24  

3(1 - o0 - 0), 9 2 sin20o. 
ki (3e t -2 )0 ) i  ' Ai = k i + 3 ( 1 - ° 0  2 " '  i = 1,2 

mi 

we reduce  the quadrat ic  part  of  H(z °) to the normal  form 

H~o)* 1 ( q ~ 2 +  p ~ 2 )  q_ 1 g2 *2 
= ~0)1 ~0)2(q2 + P2 ) + ~ P *  (2.5) 

In relat ions (2.4) and (2.5), the upper  sign refers to the domain  I and the lower sign to the domain  
II; it is assumed that  o~ ,  2/3. In the case when c~ = 2/3, one  of  the quantit ies k~ is not  defined and, in 
the case, the quantit ies nq are calculated using the formulae  

-I -1/2 -1 sin q 0 o (2 .6 )  F/It ---- /'/33 = 1/41 = --0)1 ' n12 = 1/23 ----" 0, 1/24 = /'/34 = --1/42 = 

for  0 < 0o < rt/4 when 0)1 = q-2 cos 0o, 0)2 ----- 1 and, using the formulae  

-1 1/2 -1 sin -1 0 o (2.7) n12 = n34 = 1/42 -- -0)2 , n i l  = 1/24 "= 0,  1/23 = n33 = -1/41 -- 

for  re/4 < 00 < re/2 when o)1 = 1, 0)2 = Q-2 C O S  0 0 .  If, however,  o~ = 2/3, 0o = rt/4, then we have 0)1 = 

0)2 = 1. We shall not  discuss this case any further.  
o) 

As a result of  t ransformations (2.4), the terms/q(~0 (k = 3, 4) take the form 

IqkO = 2 hv~v2g~gfll q2 P l  P2 
V1 +V2+~tl +~12 = k 

We shall not  give the explicit form of  the coefficients h*iv2u,~2 here. 

Suppose there  are no third- and four th-order  resonance relations between the frequencies  601 and 
co2, that  is 0)1 * 20)2 and 0)1 ~ 30)2. The  resonance curves 0)1 = 20)2 and 0)1 = 30)1 in domains I and II 
are shown in Fig. 1. For  points outside these curves, it is possible to construct  a t ransformat ion of  the 
Birkhoff  type which is close to a canonical  identity t ransformat ion and has the form 

q* = Qi + .. . .  Pi* = Pi + . . . .  i = 1 ,2 ,  q* = Q +  ... .  P*  = P*  (2.8) 

and which normalizes the unper tu rbed  H a m i l t o n i a n / q  (o)* up to terms of  the four th  order  inclusive. 
This t ransformat ion was obta ined using the Deprit-Hori  method.  Because of  its complexity, it is not  

0)~ presen ted  here.  The  Hami l t on i an /4  ( takes the form 

2(0) 1 2 .  1 ~2 ~ _ ,  1 4 1 ~2~2 1 
= ~0)1S1 # ~ 0 ) 2 3 2 + t , ~ F  - [ -aCl lS l  +~c12,51a24-~c22S~2+ 

1 2 n ,  1 2 . +~c,3Slt" +~c23S2P +c33p*2+05 , S ~ = Q ~ + P ~ ,  i =  1,2 

(2.9) 

where  cii are constant  coefficients which are calculated using the formulae  
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l , *2 
~(3h4ooo+h~o2o+3h,3o4o)_ 3 *2 , , Cll = ~1(5h3oo0 + 2h3ooohlo20 + hlo2o) + 

l *2 *2 2 3(022) + + 
4(02((0~ " 2.[(h2100+h0120)(8(01 

- 4 t ~ 1 )  

+ 2hT,0oh¢, o 8(0 ,- @ + 4hVo,l(h , o-hT, oo)(0,(0 -hT ,(0 21 
I , 4 @ ~  , , *2  C22 = ~(3ho4oo + h~202 + 3h~oo4) - (5h'3~ o + 2ho3oohmo 2 + hmo 2) + 

1 *2 *2 2 2 
+4(01(0 )  ~ - q.(,02)" 2,[(hl200 + h1002) (8 (02-3(01)  + 

, , 2 2 . , 2  2 
+ 2hlzoohloo2(8(02-(01) + 4h~lll  * _ (hlo02 h1"200)(01(0 2 -]'10111(0 i ] 

, , , , 1 
C12 = h2200 + h2002 + h0220 + h0022 (3h~ooo + h~o20)(h~200 + h~o02) - 

1 

, , 2 , _ , 2 , 2  
1 (3h ,300+holo2) (h2mo+h, t20)  + 2 -- 2[((h2100 ho120) +h lo l l ) (01  

(02 0 2  - 4(01 

2 , .2  
+ h~oll(h~lo0 - h~120)(021 + r. 2 - .  2[((h1200 - h~002) 2 + hol l l ) (0  2 

w i - orfl) 2 

Cl3 = L 1 + L 3 (3h*0oo + h*o2 o) - (h~'lo o + hm2o) 

MI . * M2 , * 
C23 = L 2 + L 4 - ~11 (hi200 + hlo02) - ~ 2  (3h0300 + ho102) 

C33 = /'/-- 2[~11 (02 

M i = m l n l i + m 2 n 4 i ,  L i = n l i ( l l n l i+12n4 i ) ,  i = 1,2,  

+ h~l * * 11 (h 1200 -- h 1002)(01 ] 

2 
Lj  = 13n23, j = 3 , 4  

(2.10) 

As a result of t ransformations (2.4) and (2.8), the funct ion H (1) in the per turbing part  of  the 
Hamil tonian  changes, but  its structure remains the same as in (2.1). 

3. P E R I O D I C  M O T I O N S  OF  A S A T E L L I T E  W H E N  T H E R E  A R E  NO 
R E S O N A N C E S  6o 1 = - 2 N ~ ,  o2 = - 2 N £ 2  

3.1. Isoenergetic reduct ion 
In o rder  to construct  the periodic solutions, we will first consider the mot ions  of  a system on an 
isoenergetic level. Using the energy integral H = 13D.h = const, we change to a reduced, non-autonomous  
Hamil tonian  system with two degrees of  f r eedom and an independen t  variable Q. Here ,  the funct ion 

1(01~.2+ 1(02S2 1^ .4 1^ ,,2,,2 1^ 4 
K = " ~ ' ~ 1  ~ , ~ "  2 + 4 c l l ~ l  +~C12~1~2 + ~ c 2 2 S 2  + 

+ 13(f/I + /~/2 + ~/3 + /-/4) + 0 5 + 0(132) (3.1) 

2 
Ci3(0i + C33(0i C13(02 + C23f'01 2C33(01 (02 

Cii = C i i -  ~'~ ~,~2 ' i = 1, 2,  212 ----- C12 ~.~ + ~,.--------------~- 

where / i t  k is the set of kth order  terms in Si (i = 1, 2), will play the role of  the Hamil tonian.  The  function 
(3.1) is re-periodic with respect  to Q and, generally speaking, contains all the even harmonics  of  Q. In 
particular,  H1 has the form (the coefficients a, b, c and d are defined in (2.3)) 
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2 
/tl  = al c°s2QQ1 + azCOS QQ2 + bl sin2QP! + b2sin2QP 2 

I Mi (3.2) 
a i = n l ib+n4id ,  b i = ~ n 3 . 2 + i c + a ~ ,  i = 1,2 

03 i 

In the subsequent investigation it is necessary to distinguish between the resonant case, when the 
ratio of the frequencies ¢01/~ or ¢o2/~ of the initial Hamiltonian system with three degrees of freedom 
is close to an even integer and the case when there is no resonance. The above-mentioned resonance 
is equivalent to the existence of resonance in the forced oscillations in the reduced, non-autonomous 
Hamiltonian system with two degrees of freedom with Hamiltonian (3,1). Resonance curves co/= -2N~ 
(i = 1, 2) exist in domain I (where Y2 < 0) for all N = 1, 2, 3, . . . .  The curves c0~ = -2Y~ and (1) 2 = --2~ 
are shown in Fig. 1. The resonant cases c0i = -2Y2 (i = 1, 2) will be investigated in Section 4. The cases 

2 of resonance ~oi = -2NO, when N ~ 2, require that terms of the order of ~ and higher are taken into 
account in the Hamiltonian and will not be considered. 

Calculations show that resonance relations of the form c0i -~ 2NY2 (i = 1, 2) are not realized in domain 
II (~  > 0). 

3.2. The periodic solution when there are no resonances 00 i ~ -2N~  (i = 1, 2). Geometrical interpretation 
Suppose there are no resonances of the form (.o i ~ -2N~ '~  ( i  = 1, 2 )  in the system, that is, the points 
(cx, 00) do not belong to the curves co i = -2N~  (i = 1, 2, N = 1, 2, 3, ...) from domain I and their small 
neighbourhoods or lie in domain II. Following the Poincar6 method, a unique solution of the system 
with Hamiltonian (3.1), which is ~-periodic with respect to Q and analytic with respect to e, can be 
constructed, which has the form 

I 1 Qi = Q * ( Q )  = ~ - ~ + 5Zi cos2Q + O(e2), Pi = P * ( Q )  = eZ~asin2Q + o(~z)  

ab aifl)i - 4bif~ ba biO) i _ ai ~ (3.3) 
Zi = , Xi = 2 2 '  i = 1,2 

4 ~ 2 _  2 4 ~  - (0 i 

for the points of domain I; for the points of domain II, co2 must be replaced by -c% 
From relations (3.3) and the energy integral H = eD.h, we obtain a solution for the quantity P*, which 

is x-periodic in Q (the coefficient a is defined in (2.3)) 

P* = J*(Q) = e[h ac-~ZQ]+-- - O(e 2) (3.4) 

Relations (3.3) and (3.4) specify a one-parameter family of solutions, which is n-periodic in Q a n d  
analytic with respect to e, of a system with three degrees of freedom with Hamiltonian H = 
/~(0) + a/~0), the unperturbed part I~r (°) of which is defined by formula (2.9). The energy constant h 
serves as the parameter. 

In the initial variables, the following family of motions of the satellite, which are n-periodic in % 

0 = 0 0 + ~(A 1 + a z c o s 2 ~ )  + O(~2), ~ = eB 1 sin2tp + O(E 2) 

al + 2 M l h  a2 + 2M2h 1 ab 1 aO 
A l = - n i l  2¢01 n12 2(02 , A 2 -- ~ n l l ~ l  +~n12~2 (3.5) 

ba ba 
B I = n23Z1 + n24Z2 

corresponds to this family of solutions. 
Here, the change in the variable ~p is described by the equation 

dq) = ~ + G(~p) 
dx 

G(~p) = (mln l l  + m2nnl)(Q~ 
M1 

+(mln12+m2n42) (Q ~ M 2 j , ~  cos200 2 
- CO 2 : + 2 n J * - e s i ' ~ 0  c°s tp+O(e 2) 
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I 
I 

J 
Fig. 2 

Theperiod_ of the solution (3.5) with respect to the "time" "c is equal to T = 2n/~1, where £21 = 
+ G and G is the mean value of the function G(q)) over a period n. 
Relations (3.5) (if the terms O(e z) are neglected) correspond to such a motion of the satellite when 

the unit vector of its axis describes a spatial curve on a sphere of unit radius with its centre at the centre 
of mass G, the projection of which onto the plane GX'Y' of the orbital system of coordinates, which is 
perpendicular to the axis of the satellite in the unperturbed motion, is an ellipse (Fig. 2). The equation 
of the ellipse will have the form (the GX' axis coincides with GX and the GY' axis lies in the GXYplane 
and makes and angle 00 with the G Y  axis) 

X ,2 ( y ' - E A I )  2 
+ 

(eB 1 sin00) 2 (EA2) 2 
- 1  

The semi-axes of the ellipse have a length of the order of e and its centre is displaced relative to the 
origin of the coordinates G by an amount of the order of ~. 

3.3. The stability of  the periodic solution 
In order to solve the problem of the stability of the periodic solution (3.3), (3.4) in the Hamiltonian/~ 
(with an unperturbed part (2.9)), using a canonical transformation of the form [12] 

Qi = Qi*(Q) + Xi, ei = P*(Q) + Yi, i = 1, 2, Q = ¢P3 

de*  dO* dP 7 dQ* 
p* = J*(Q) + x l - ~ -  y l - - ~  + x z - - ~ -  y 2 - - ~  + R 3 

(3.6) 

we introduce the perturbations of the variables Qi, Pi (i = 1, 2) and P* relative to their values for the 
periodic motion and subsequently change to the "polar" coordinates % Ri (i = 1, 2) using the formulae 

X i = 2~/sinq)i ,  Yi  = 2~/COS(Pl 

The perturbed Hamiltonian then takes the form 

F = (0),R 1 + O)2R 2 + •R 3 + + + cijRiR j + ~Fi I) + O(e 2) 
i , j  i < j  

(3.7) 

where F~ 1) (k = 2, 3, 4) are forms of the kth power with respect to the quantities I Ri [ 1/2 (i = 1, 2, 3) 
with coefficients which are n-periodic with respect to %. 

The case of  parametric resonance, Suppose the parameters (z and 00 from the domains I and II are 
such that the frequencies c01, co 2 and f2 are linked by one of the relations 2~ i = 2N I ~[  (i = 1 or i = 2), 
co l -  co2 = 2N ] f~ [. There is then parametric resonance in the system. Calculations show that the above- 
mentioned relations are not realized in domain II. At the same time, in domain I, the corresponding 
resonance curves (RC) exist for all values of N. The resonance curves (RC) 2c01 = -2f2, 2o~2 = -2f2 
and oh + co2 = -2~2 (labelled with the pairs of numbers 2;0, 0;2 and 1;1 respectively) are shown in 
Fig. 3 for the case when N = 1. When ~ ~ 0, a domain of parametric resonance is created from each 
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point of these resonance curves (there are two surfaces in the three-dimensional space of the parameters 
cx, 00 and ~ which, when a = 0, emerge from each resonance curve and specify the domains of parametric 
resonance). In the case of the points of the resonance curves Ol - e01 = - 2 N ~  from domain I, stability 
occurs when account is taken of terms in the Hamiltonian no higher than the first order in R i. 

Outside these resonance curves, the form of ~1) in the Hamiltonian (3.7) can be simplified by retaining 
just the "secular" terms in it. We then obtain 

]", _ (~ lg l  4" ~.2R2 + ~'~*g3) + EF~I) + (EcijRiRj + EI'~] 1)#) + O(E 2) 

~'i = ¢°i +O(E) =const ,  i = 1,2, ~ *  = ~ + O ( ¢ )  = const 
(3.8) 

The cases of  third and fourth-order resonances. We will now consider the cases of third- and fourth-order 
resonances. The corresponding resonance curves are specified by the equations k1~1 + k2~2 = 2N] ~* I 
(N = 1, 2 . . . .  ), where kl and k2 are integers which satisfy the relation ]kl[ + Ikz] = I (l = 3 or l = 4). 

Stability occurs in the corresponding finite approximation in the resonance curves from domains I 
and II, for which the relations klk 2 < 0 and klk2 > 0 are satisfied respectively (only the resonance curves 
~.a + 2 ~  = 2N~*, X1 + 3~2 -- 2NO* of the above-mentioned form exist in domain II). 

Instability can only be observed in the resonance curves for which k~k2 > 0 in domain I and kak2 < 0 
in domain II (resonance curves only exist when 2~1 - ~2 = 2N~*, 4~2 = 2NO*, 2kl - 2~2 = 2NO* in 
the latter domain). We shall confine our consideration to the case when N = 1. Resonance effects when 
N > 1 manifest themselves in terms of the order of e "u. Resonance curves of the form being considered 
are shown in Figs 3 and 4 for the case when N = 1. Each resonance curve is labelled with the corres- 
ponding pair of numbers kl; k2. 

The periodic motion being considered is unstable for points of the third-order resonance curve if, 
in Hamiltonian (3.8), the coefficient in the term with the corresponding resonance harmonic in the form 
~1) is non-zero [2]. Calculations show that the condition for instability is violated (the corresponding 
coefficient vanishes) for points of the resonance curves with the abscissae 

0.153 .... 0.661 .... 0.796 .... 0.897... (RC 3~. 2 = - 2 ~ * )  

0.512 .... 0.672 .... 0.823 .... 0.889... (RC ~.l + 2X2 = - 2 ~ * )  

0.145 .... 0.643 .... 0.820... (RC 2~. 1 +~.2 = - 2 ~ * )  

0.258 .... 0.648... (RC 3~q = - 2 ~ * )  

1.361 .... 1.518... (RC 2~ 1 - -~ '2  = 2fl* f romdomain  II) 

Suppose now that there are no resonances of up to the third order inclusive in the system and, at 
1) the same time, the point (t~, 00) belongs to one of the fourth-order resonance curves. The form Ft in 

Hamiltonian (3.8) can then be eliminated and the fourth-power terms simplified, taking account of the 
resonance which exists. Since the resonance components in the fourth-power terms are of the order of 
magnitude of e while the coefficients cij are of the order of unity, then, as a rule, stability occurs in the 
fourth-order resonance curves when terms of no higher than the second order in Ri are taken into account 
in the Hamiltonian [2]. The points on the resonance curves, for which the coefficients bij in the fourth- 
order terms of the Hamiltonian of the reduced system with two degrees of freedom, corresponding to 
the system with Hamiltonian (3.8), satisfy the relations (see formulae (3.1) for the expressions for the 
coefficients Oij) 

ell = 0 ( for  RC 4~. 1 = - 2 f l * )  

9~11 + 3 ~ 1 2 + g : 2 2  = 0 (for  RC 3~q +~'2 = -2f~*) 

Cll + C12 + C22 = 0 ( for  RC 2 ~  1 + 2~, 2 = - 2 f l * )  (3.9) 

Oil +3012+9~22 = 0 ( f o r R C  ~1 +3~2 = - 2 ~ * )  

c22 = 0 ( for  RC 4~ 2 = - 2 f l * )  

are an exception. 
For the resonance curves (RC) 2X 1 - 2~2 = 2~* and 4£2 = 2~* from domain II we have relations 

which are analogous to the third and fifth equations in (3.9). 



~/2 

00 ~ = 6" 

378 O.V.  Kholostova 

0 ct 1 

Fig. 3 

00 

3~z/6 

n/3 

r~/6 
4/3 1.5 a 2 

Fig. 4 

Calculations show that  the first relation of  (3.9) is not  realized and that  the remaining relations in 
(3.9) hold at points with the abscissae 0.717 ... ; 0.576 ... , 0.632 . . . .  0.761 ... ; 0.533 . . . .  0.673 ... ; 
0.397 ... respectively. In  domain  II, the corresponding relation for the resonance curve (PC)  4k 2 = 
-2f~* is not  realized while, for the resonance curve 2~ 1 - 2Z2 = 2f~*, it holds at the point  with abscissa 
1.391 . . . .  

Calculations were carried out  separately using formulae  (2.6) and (2.7) for points of  the third- and 
four th-order  resonance curves when t~ = 2/3. It was shown that, in the case of  a thi rd-order  resonance,  
there  is instability at these points (the resonance coefficients are non-zero)  apart  f rom at a point  lying 
on the resonance curve 3Z1 = -2f~* where the corresponding resonance coefficient vanishes. Relations 
(3.9) and the analogous relations for domain  I I  are not  realized in the case of  points of  all the fourth-  
order  resonance curves with abscissae ~ = 2/3, that  is, stability occurs in the final approximation.  
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The general non-resonant case. Finally, suppose there are no resonances of up to the fourth order 
inclusive. Then, Hamiltonian (3.8), which has been normalized up to terms of the fourth power, has 
the form 

F = F* + O(£), F* = )~IRI _+ ~2R2 + ~ * R  3 + Zc~jRiRj 

cij* = cij + O(e) = const 

The periodic motion being considered will be orbitally stable for the majority of initial conditions if 
the conditions [3] 

det 2F Fll D 3 = det oeF* e 0, or D3 = 0 R ~ j  ~ / /  ¢:0 
ORiORj OF* 

0 

(3.10) 

are satisfied. 
The supplement to the above-mentioned majority of initial conditions is of the order of O(4-~) [3]. 
Calculations showed that D3 < 0 and D4 > 0 in domain II, and hence orbital stability occurs for all 

points of domain II outside the resonance curves for the majority of initial conditions. At the same 
time, resonance curves exist in domain I in which D3 = 0 and D 4 = 0. The condition D3 = D 4  = 0 is 
satisfied at the two points (0.604 ... ; 1.370 ...) and (0.817 ... ; 0.704 ...) of domain I. Hence, in the 
general non-resonant case, the periodic motion of the satellite being considered is orbitally stable (for 
the majority of initial conditions) both in domain II as well as in domain ! (with the exception, perhaps, 
of the two points which have been indicated). 

4. P E R I O D I C  M O T I O N S  OF A S A T E L L I T E  IN T H E  CASE OF T H E  
R E S O N A N C E S  c0~ = -2U~( i  = 1, 2) 

We will now construct the periodic motions of a satellite for values of the parameters ¢x and 00 which 
belong to the resonance curves 6Ol = -2f2 and 6O2 = -2f2 or small neighbourhoods of these curves (see 
Fig. 1 and, also, Fig. 3, where these resonance curves are labelled with the pairs of numbers 1;0 and 
0;1). 

The theory of the resonant periodic motions of autonomous Hamiltonian systems with two degrees 
of freedom, which are close to systems with a cyclic coordinate, has been developed earlier [1]. We will 
now extend these results to the case of a system with three degrees of freedom which is being considered 
here. 

In the Hamil tonian/J  (with an unperturbed part (2.9)), we put 

Qi = £1/3Q., Pi = l / 3 p . ,  i = 1, 2, P* = ~2/3J3, Q = ~3 

and then change to the "polar" coordinates ~i, Ji (i = 1, 2) using the formulae 

Q* = 2 ,~ /s invi ,  P/* = 2~ , . cosv i  

The Hamiltonian takes the form 

3 
1/3 .*0) ~2/3H1(1) H* = 6olJl + 6o2J2 + ~c~J3 + l~ 2/3 £ ci jJ iJj  + e 1-10 + + O ( E )  (4.1) 

i,j = 1; i<_j 

The function H~ (1) is obtained from the function H~ l), which has been defined in (2.3), by replacing 
.(1) q0 by ~3, while the function H 1 is obtained from the function (3.2) by replacing Q by ~3, and Qi and 

Pi (i = 1, 2) by 4-~-sin~i and ~ i c o s ~ i .  
Using the canonical replacement 

~,(l)  
j ~  1/3"~0 

= J 3 - E  ~ , I1/3 = I1/3 
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we eliminate the term with H~ (1) in (4.1), and, in H~ (1), we also eliminate all terms with non-resonance 
harmonics. 

4.1. The case when 0)2 = - 2 ~  
Initially suppose 0)1 -~ -2f~. Then, the term H~ (1) remains in ~ l ~ l s i n ( ~  1 + 2~3), where K1 = 

(a I + 2bl)/4, (the quantities al and ba are defined in (3.2)). 
We now carry out the canonical replacement of variables. 

• l = V * - 2 ~ * + 2 ,  V2 = V*, ~3 = V* 

Jl = I1, J2 = 12, J3 = 13 + 211 

and introduce the resonance detuning by putting 0)1/f~ = -2  + E2/3~. The Hamiltonian of the system 
takes the form 

2/3 . . . .  2 
H = ~ I  3 + 0)212 + ~ ~t [a2212 + d23[213 + d33I~) + 

+ [ (~ '~  + d1212 + d1313)I 1 + KI ~ 1  cos~/~ + dill21] } + O(~)  

d 1 1 = c 1 1 + 2 c 1 3 + 4 c 3 3  , d 1 2 = c 1 2 + 2 c 2 3 ,  d13=c13+4c33  , djk=cjk, j , k  = 2,3 

(4.2) 

The values of the frequencies f2 and 0) 2 in (4.2) must be calculated for values of the parameters cz 
and 00 belonging to the resonance curve 0)1 = -2~2 or a small neighbourhood of this curve. It suffices 
to calculate the values of the coefficients ~:1 and dq for points (cz, 00(cz)) lying on the resonance curve. 

The form of the periodic solution is determined by the values of the coefficients ~:1 and d~l. The 
relations ~;1 = ~q(cz) and dll = dll(cz) (cz e (0, 0.900)) on the resonance curve 0)1 = -2f~ are shown in 
Fig. 5. 

We exclude the points cz = 0.764 . . . .  cz = 0.626 ... (the zeros of these functions) from consideration. 
At the point of discontinuity cz = 2/3 on the graph of the function K1 = ~q(a), the coefficients nq of the 
linear replacement of variables (2.4) have to be calculated using formulae (2.6). All the remaining 
transformations and calculations are carried out as in the general case, and we obtain that ~1 e 0. 

We make the following replacement of variables 

I i = Kl.pi ,  i = 1 ,2 ,3 ,  ~]~ = 01+(3 l, ~ = 0j, j = 2 , 3  

l ( l ,  = ( l ( l /d l l )  2/3, (31 = r~(1- sign(~ld11))/2 
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The transformed Hamiltonian takes the following final form 

2/3.. 2 
/£/ = ~p3+0)292+£ l(~lP2+~e13293+o~3P~)+ 

+~[(blf+b292+b393)91 +9~+ ,f9-~ cosOi] } + 0(~) 

O~ 1 = d22Kl,, (X 2 = d23Kl,, O~ 3 = d33~1,, {3 = d111,cl, 

b I = ~ / ~ ,  b 2 = d l2 /d l l ,  b 3 = dlB/dl l  

(4.3) 

The term O(e) in (4.3) is n-periodic in 03. 
We will now construct the periodic motions of the system with the Hamiltonian (4.3) (see [1]) and 

we will initially consider the motions of the system on an isoenergetic level. Using the energy integral 
= D.h = const, we change to a reduced system with two degrees of freedom with the independent 

variable 03. The Hamiltonian of this system has the form 

012 E 213{I 2 ( 0)2 / ( ~-~2 )21 
K = ~132+-~  - a , p 2 + ~  2 h - ~ p  2 p2+~3 h -  P2 + 

0)2 2 } 
(4.4) 

We will also consider the approximate Hamiltonian K, which is obtained from K by neglecting the 
term O(e). In the system with the HamiltonianK, the coordinate 02 is cyclic and hence 92 = c2 = const. 
If the additive constant is discarded, the Hamiltonian K takes the form 

E 2/31~ , 
k =  ---n--H, ,v' =-Xp,+p +J ,cosO, 

O) 2 
)~=- Ib iS+  b2c2+ b 3 ( h - - ~ c 2 ) ] = c o n s t  

(4.5) 

The function H' is a model Hamiltonian for systems with one degree of freedom in the case of 
resonance in the forced oscillations [13]. However, if the parameter X is solely determined by the 
magnitude of the resonance detuning in these systems, then, in the Hamiltonian H', the parameter X 
still depends on the constant c2 of the cyclic integral (which is associated with the existence of the cyclic 
coordinate 02) and on the constant energy h of the initial system with three degrees of freedom. 

The equilibrium positions of the approximate system with Hamiltonian (4.5) are described by the 
relations 

92 = c2 = 0, Pl = P,*, 0, = 0 , ,  (4.6) 

where 01 .  , 131 * is one of the equilibrium positions of the model system with the Hamiltonian H'. When 
X < 3/2, the model system has a single stable equilibrium position 

p(l °) 1~' ch q0 + ~, 0(10) / 27-4)C3] 
= T 3 = n chq~ = 4[X{ 3 ) (4.7) 

and, when X ~> 3/2, it has three equilibrium positions 

4X3_27 ] (4.8) 
- -~c°s ( -q0+~/+ , ,  ' 3  '3  -~]  ~ 0(13)=rC cosq0- -4~-g ) 9(13)= 

of which two, that correspond to the greatest (p]3)) and smallest (p~l)) values of Pl, are stable, while the 
one corresponding to the middle value of Pl is unstable [13]. 
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When Z = 3/2, the model system has an unstable complex singular point Pl = 1/4, 01 = 0, which we 
shall subsequently exclude from considerations and a stable equilibrium position Pl -- 1, 01 = re. 

In the neighbourhood of the equilibrium position (4.6) of the approximation system, the complete 
Hamiltonian (4.4) of the reduced system has the form (it is assumed that P2 = r2, 01 = 01. + Xl, 
91 = Pl* +Yl) 

I032 l E2/3]~V 6Pl*-X 2 l K = ~ + O ( £  2/3) r 2 + - - - ~ - - [ p l . ( 2 P l . - Z ) x ~ +  4 P l .  Y l + O 3  + O ( g )  (4.9) 

where 03 is the set of terms, the power of which with respect to xl ,  Yl,  1"1/2 is no lower than the third. 
The term O(e) in (4.9) is r~-periodic in 03. 

Calculation showed that the quantity mJf2 is not close to an even integer for values of the parameters 
and 00 belonging to the resonance curve col= -2f2 and a small neighbourhood of this curve. The 

non-resonance case in Poincard's theory of periodic motions holds and, from each equilibrium position 
of the approximate system with the Hamiltonian K, a unique solution of the system with the Hamiltonian 
K is generated, which is It-periodic in 03 and analytic in e 1/3, and this solution has the form 

01 = 01(03) "1" 01 .  + O(E), Pl -- pI(03) - P l * + O ( E ) ,  P2 = P2(03) = O(E2) (4.10) 

The last relation in (4.10) can be replaced by two relations for the Cartesian coordinates 02, P2 
corresponding to the pair x2, Y2 (x2 = "~-P2 sin02, Y2 = 4-2pe cos02 

X 2 = X2(03) = O(E), Y2 = Y2(03) = O(~) 

From the relations (4.10) and the energy integral of the system with three degrees of freedom with 
Hamiltonian (4.3), we obtain 

2/3 
P3 : P3(03) : h - ~ - { a 3  h2+ ~[--~Pl* + p21* + O~I~COS01*]} + O(E5/3) 

= - (b l~  + b3h) 

(4.11) 

where the term O(~ 5/3) is 7t-periodic in 03. 
Relations (4.10) and (4.11) describe a one-parameter family of solutions (the energy constant h acts 

as the parameter) of the system with three degrees of freedom with Hamiltonian (4.3) which are rt- 
periodic in 03 and analytic in the quantity el/3. There are one or three such families depending on the 
parameter )~ of the model system. 

In the initial variables, we have the following family of motions of the satellite, which is re-periodic 
in q0 (the angle of natural rotation) and analytic in ~1/~ 

(4.12) 

1/3 
0 = O0+E rill 2 ~ I , P l , C O S ( O 1 ,  + ~ 1 - 2 9 ) + 0 ( e  2/3) 

1/3 gt = - e  n23~2~:l ,Pl ,s in(01,  + 01 -2tp)  + O(e 2/3) 

Here, the change in the variable q0 with ~ is described by the equation 

dq0 = ~+f.ll3gl((p). . 
d'c 

g~(cp) = (mlnll  + m2n41) 2 ~ l , P l , C O S ( 0 1 ,  + ~1-2q0) + O(E 1/3) 

The period of the motions (4.12) with respect to z is equal to 

T = 2g/f~*, ~*  = ~'~ + E1/3gl = ~'~ + O(1~ 2/3) 

where gl is the mean value of the function gl(~p) over a period ft. 
If the terms O(e 2/3) are neglected, relations (4.12) determine the motion of the satellite when the 

unit vector of its axis describes a closed, three-dimensional curve on a unit sphere with its centre at the 
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centre of mass of the satellite, the projection of which onto the GX'Y'  plane (which is described in Section 
3.2) is the ellipse 

X ,2 

1/3 • * P l * )  (e slnO0n23 2~1,~-- - - -  2 

with semi-axes of the order of ea/3. 

y,2 
= 1  

. 1/3 ~ 2 
, P l , )  te nu ~/z~: l 

We will consider the problem of the stability of the periodic motions which have been found. Motions 
generated from an unstable equilibrium position of the model system with the Hamiltonian H '  will be 
unstable, since the characteristic equation of the linearized, approximate system has a positive real root. 

In order to solve the problem of the stability of the motions generated from the stable equilibrium 
positions of the model system, we specify the perturbations of the variables of the system with 
Hamiltonian (4.3) relative to their values for the periodic motions, using the following canonical 
transformation (which is analogous to (3.6)) 

01 = 01 4- X 1, Pl = Pl + Yl, x2 = -~2 4- X2, Y2 ----- Y2 4- Y2, 03 = W 

+ X d~l y dO1 + X d~2 dx2 
03 = P3 1-d--~- w - l~w 2~w w - r2~w w + r]  

We then normalize the perturbed Hamiltonian up to terms of the fourth order inclusive. In the "polar" 
coordinates % ri (i = 1, 2, 3), the normalized Hamiltonian takes the form 

2/3 
H = E2/3~O)*rl + O)*r 2 + ~ * r  3 + E Zei jr i r j  + 0(13) 

where 

f.O* = f.O + o(El/3)(( .02 = (6pa,  - Z) (2pl ,  - Z)), co* = 032 + O(E2/3),  ~ *  = ~ 4- O(E 2/3) 

and the coefficients eij (if the terms in them of the order of el/3 and higher are neglected) are calculated 
using the formulae 

e,l = ~I2(a6+3as+3aT)-3a~+6a3a4+15a~ l o) ' el2 = - (a3 + 3a4) 

el3 = - ~ - ~ ( a  3 + 3a4), 
 c,c2 

e22 = O~1- ~ '  e23 = O~2- ~ ' 0 )  e33 = O~3 - 2 c o  

Z-2pl, ~ -  2Pt* P l , ( Z - 2 9 1 , )  4 
a 3 - - ~ s ,  a4 = 2 3 ' a5 = s 

8p l ,  s 12 

Z - 2 p l ,  50C-291 . )  b 2 b 3 
a6 = 8 P l ,  a7 = 64pl,s3 4 ' Cl = --'S C2 = --S 

I 6Pl .  -X 1TM 
s =  2--7 - - -  

[4P1.(291.  - Z)J 

The coefficients eij depend on the parameter Z of the model system and also on the position of the 
point (a, 00((z)) on the resonance curve. 

We now check the conditions, analogous to (3.10), for all permissible values of the parameters Z and 
c~. Calculations show that, in the case of the periodic motions which are ~enerated, when Z > 3/2, from 
the stable equilibrium positions of the model system to which 131. = p~lTor 91. = P~ 3) correspond, the 
above-mentioned conditions are satisfied and these motions are orbitally stable for the majority of initial 
conditions. In the case when Z < 3/2 and of the periodic motions generated from the stable equilibrium 
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position of the model system to which 131, = 9t  °) corresponds, these conditions are violated at the single 
point a = 0.626 . . . ,  Z = -0.459 . . . ,  where D 3 = D 4 = 0. In the case of the remaining permissible values 
of the parameters  ~ and )~, the motions being considered are orbitally stable for the majority of initial 
conditions. 

4.2. The  case w h e n  0) 2 ~ - 2 f 2  
The periodic motions of a satellite which arise in the neighbourhood of its conical precession in the 
case of the resonance 0)2 = -2f2 can be obtained in a similar manner.  

A denumerable set of points exists on the resonance curve 0)2 -~ -2f2 for which we have 0)1/0)2 = N 
(N = 2, 3 . . . .  ) (the points of intersection of the curve 0)2 = -2f2 with the curves 0)1 -- 20)2 and 
0)1 = 30)2 correspond to cases N = 2 and N = 3 respectively, see Fig. 1). These cases of multiple resonance 
are not considered further. 

Outside the above-mentioned points and their small neighbourhoods, the resonance coefficient 
~:2 = ~ (a2 + 262)/4 and the coefficient d22 = c22 + 2c23 + 4c33 in the fourth-order terms of the 
Hamiltonian, which is analogous to (4.2), determine the form of the periodic motions. 

Graphs of the functions K 2 = K2(00 and d22 -- d22(00 for the resonance curve 0)2 = - 2 f l  are shown 
in Fig. 6. These functions have zeros at c~ = 0.925 ... and ~ = 0.844 . . .  respectively. Moreover,  the 
function d22 = d22(0 0 has a discontinuity at o~ = 0.888 ... (at the point of intersection of the resonance 
curves 0)2 = -2f~ and 0)1 = 20)2). We also exclude these values of o~ from consideration. 

For the remaining values of c~ we obtain the families of motions of the satellite 

0 =- 00 + g l / 3 n l 2 ~ C O S ( 0 2 ,  + G 2 - 2q0) + O(g  2/3) 

1/3 
= - e  n 2 4 ~ s i n ( 0 2 ,  + 6 2 -  2qo) + O(e 2/3) (4.13) 

K2* = (K2/d22) 2/3, (Y2 = n(1-s ign(~2d22)) /2  

which are rt-periodic in q0 and analytic in e 1/3. 
Here,  (02,, P2*) are the equilibrium positions of the model system, defined by formulae (4.7) and 

(4.8). The parameter  Z of the model system for the periodic solutions (4.13) is calculated using the 
formula 

Z = - ( b i g  + [93h) 

bl = ~"~[~, ~ = d221~2,, b3 = d23]d22, ~)22 = c22 + 2c23 + 4c33, ~/23 = c23 + 4c33 

where g is the resonance detuning, introduced using the formula t o j ~  = -2  + e2/3g. 
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In the solutions (4.13), the change in the variable q0 with z is described by the equation 

d___~ = ~ + 1/3g2(£0 ) 
dx 

g2((p) = (min i2  + m 2 n 4 2 ) ~ c o s ( 0 2 .  + IJ 2 - 2q0) + O ( e  1/3) 

The period of the motion (4.13) with respect to "c is equal to 

T = 21t/f~, ~ = ~ + El/3g2 ----- ~'~ + O(E 2/3) 

where g2 is the mean value of the function g2(q0) over a period n. 
Depending on the parameter )~ of the model system, there is one or three periodic families of the 

form of (4.13). 
The motions of  a satellite which are generated (when Z > 3/2) from an unstable equilibrium position 

of the model system will be unstable. Motions generated from stable equilibrium positions of the model 
system are orbitally stable for the majority of initial conditions since, as calculations show, conditions 
similar to (3.10) are satisfied for all permissible values of the parameters cx and )~. 

This research was supported financially by the Russian Foundation for Basic Research (02-01-00831). 

R E F E R E N C E S  

1. KHOLOSTOVA, O. V., Internal resonance in an autonomous Hamiltonian system close to a system with a cyclic coordinate. 
Prikl. Mat. Mekh., 2002, 66, 3, 366-380. 

2. MARKEYEV, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978. 
3. ARNOL'D, V. I., KOZLOV, V. V. and NEISHTADT, A. 1., MathematicalAspects of Classical and CelestialMechanics. Editorial 

URSS, Moscow, 2002. 
4. DUBOSHIN, G. N., Rotational motion of artificial bodies. ByulI. Inst. Teor. Astron., Akad. Nauk SSSR, 1960, 7, 7, 511-520. 
5. CHERNOUS'KO, E L., The stability of the regular precession of a satellite, Prikl. Mat. Mekh. 1964, 28, 1, 155-157. 
6. MARKEMEV, A. P., The stability of a canonical system with two degrees of freedom when there is resonance. Prikl. Mat. 

Mekh., 1968, 32, 4, 738-744. 
7. BELETSKII, V. V., The Motion of a Satellite About a Centre of Mass in a Gravitational Field. Izd. Mosk. Gos. Univ. (MGU), 

Moscow, 1975. 
8. SARYCHEV, V. A., Asymptotically stable steady rotations of a satellite, Kosmich. issled., 1965, 3, 5, 667-673. 
9. SARYCHEV, V. A. and SAZONOV, V., Gravitational orientation of a rotating satellite. Kosmich. Issled., 1981, 19, 4, 499-512. 

10. CHEKHOVSKAYA, T. N., Resonant periodic motions of an axially symmetrical satellite in an elliptic orbit. Kosmich. Issled., 
1986, 24, 1, 15-23. 

11. SAZONOV, V. V. and SIDORYUK, M. Ye., Periodic motions of an axially symmetrical satellite about a centre of mass under 
the action of a gravitational moment. Izv. Akad. Nauk SSSR. MTT, 1984, 3, 6-16. 

12. MARKEYEV, A. E, Dynamic causes of the asymmetry in the arrangement of gaps in the asteroid belt. Pis'mav vAstron. 
Zh., 2001, 27, 7, 554-559. 

13. KHOLOSTOVA, O. V., The motion of a Hamiltonian system with one degree of freedom when there is resonance in forced 
oscillations. Izv. Ross. Akad. Nauk. MTT, 1996, 3, 167-175. 

Translated by E.L.S 


